
Concealing Complex Policies with Hidden Credentials ∗

Robert W. Bradshaw, Jason E. Holt and Kent E. Seamons
Internet Security Research Lab

Brigham Young University

rwb43@email.byu.edu, isrl@lunkwill.org, seamons@cs.byu.edu

ABSTRACT
Hidden credentials are useful in protecting sensitive resource
requests, resources, policies, and credentials. We propose
a significant performance improvement when implementing
hidden credentials using Boneh/Franklin Identity Based En-
cryption. We also propose a substantially improved secret
splitting scheme for enforcing complex policies, and show
how it improves concealment of policies from nonsatisfying
recipients.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms
Algorithms, Security, Theory

Keywords
Authentication, Privacy, Credentials, Trust Negotiation, Se-
cret Sharing, Identity Based Encryption

1. INTRODUCTION
If Alice and Bob share a secret, they can use it as an au-

thentication token or digital credential. Alice can use the
secret to encrypt resources and send them to Bob over in-
secure channels, and unauthorized parties will gain noth-
ing from the ciphertext. Public key cryptography extends
this scenario to situations when Alice and Bob have dif-
ferent credentials—or when Alice has no credentials at all—
using digital certificates signed by trusted third parties. Bob
shows his certificates to Alice, Alice verifies that the certified
attributes satisfy her policy for releasing the resource, and

∗This research was supported by funding from DARPA
through SSC-SD grant number N66001-01-1-8908, the Na-
tional Science Foundation under grant no. CCR-0325951
and prime cooperative agreement no. IIS-0331707, and The
Regents of the University of California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04, October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

Alice encrypts her resource using Bob’s public key. That
is, Alice can send messages to Bob based on possession of
credentials which she cannot issue: she knows neither the
credential issuer’s private key nor Bob’s private key.

Hidden credentials extend the situation even further. Us-
ing Identity Based Encryption (IBE), Alice can create a pub-
lic key corresponding to an arbitrary string and the public
key of a trusted third party. Only the trusted third party
can issue the corresponding private key to the “owner” of
the string. Hidden credentials leverage this by encoding at-
tributes in strings according to a template published by the
trusted third party. For instance, the FBI might publish
a template “(nym):FBI agent:(current year)” for FBI agent
credentials which expire at the end of each year, and issue
Bob the private key corresponding to “Bob:FBI agent:2004”.
Alice can then send messages to Bob based on credentials
which he may or may not have. She may not know that Bob
is an FBI agent, but she knows that if he is, he must know
the private key corresponding to “Bob:FBI agent:2004”. Us-
ing secret splitting, Alice can create messages which require
any number of credentials for decryption. Consequently, she
can encrypt a resource in such a way that only Bob can de-
crypt the resource, and only if he has credentials sufficient to
satisfy Alice’s access policy. Bob can do this without Alice’s
help, with the result that Alice never needs to learn what
credentials Bob has.

This has interesting consequences.
First, hidden credentials can solve the “going first” prob-

lem in PKI-based authentication systems. Normally, if Alice
and Bob wish to establish a trust relationship, one of them
must volunteer to go first, showing a credential to a stranger
about whom he or she knows nothing. Hidden credentials al-
low Alice to enforce her policies without having to see Bob’s
credentials, and vice versa. This also means that combina-
tions of policies which have unresolvable dependency cycles
in traditional trust negotiation work just fine with hidden
credentials.

Second, policies can be concealed from unauthorized re-
cipients. In many cases disclosure of a policy which requires
a sensitive credential is a red flag to attackers that the re-
source it protects is valuable. Hidden credentials use secret
splitting schemes which conceal policy contents from unau-
thorized parties; only a recipient who holds the credential
required by a policy learns that the credential is involved.
The improved secret splitting scheme we present here limits
this partial disclosure even further, so that only recipients
who fulfill complete subexpressions of a policy can determine
that they have done so.

Third, it means that credentials can be created and used
which are so sensitive that they’re never shown to anyone.
If Alice is a whistleblower and suspects that coworker Bob
is actually an undercover investigator, she can send him evi-
dence encrypted against the FBI credential he must possess
if he really is an investigator. Bob can decrypt the informa-
tion without blowing his cover, even to Alice.

Fourth, hidden credentials can improve protocol perfor-
mance, since Alice and Bob don’t have to send credentials or
policies over the network. Instead, Alice uses Bob’s nym to
derive the public keys Bob must hold if he is to fulfill her ac-
cess control policy. The nym may be something she already
knows, such as a domain name or IP address, or something
she doesn’t, like a real name or one-time pseudonym. In
many cases, the progressive multi-round policy and creden-
tial exchanges used in traditional trust negotiation can be
reduced to a single exchange of messages with hidden cre-
dentials, since all the policies governing a resource can be
enforced in a single ciphertext.

The contributions of this paper are as follows:

• We show how to speed up hidden credential decryp-
tion operations by an order of magnitude when using
the Franklin/Boneh IBE from [6], and show how these
results are reflected in our implementation.

• We present an improved secret splitting scheme. The
original scheme revealed information about the opera-
tors in the access structure. Our improved scheme fur-
ther limits what the recipient of a message can learn
about the sender’s policy.

• We present the notion of policy concealment and show
how it is partially provided by our improved secret
splitting scheme.

Note that this paper deals only with improving the Encrypt
function in a hidden credential system, which is used to cre-
ate ciphertexts which can only be decrypted using the appro-
priate credentials. [8] describes how such ciphertexts can be
used in a variety of protocols to realize features found only
in hidden credentials.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 provides basic def-
initions for hidden credentials. In Section 4, we discuss an
approach to achieving an order of magnitude performance
improvement when performing multiple secret share decryp-
tions. Section 5 introduces a secret splitting scheme that
limits what a recipient can learn about the sender’s com-
plex policy. Sections 6 presents the performance results of
an implementation of the secret splitting scheme. Section 7
contains conclusions and discussion of our future plans.

2. RELATED WORK
Holt et al. introduced hidden credentials in [8]. They

gave a formal description for hidden credentials, including
the concept of credential indistinguishability, and showed
how to build them using the Franklin/Boneh IBE. Their
work also gives compelling examples of the utility of hidden
credentials.

Sending Bob a message which he can only read if he has a
certain attribute is easy if all people who have that attribute
share a common secret. For example, Bob could distribute

an RSA private key to all the members of “Bob’s Club.” Al-
ice could then send messages to club members without being
a member herself. However, widely shared secrets tend to
leak. Furthermore, since RSA public key encryption has no
forward secrecy, all messages sent to club members become
vulnerable if the private key is compromised by any one
member. Hidden credentials avoid both of these drawbacks
by allowing Alice to use a public key which depends upon
Bob’s attribute and his identity. If Bob’s secret is compro-
mised, only messages to Bob become vulnerable.

Hidden credentials are built upon identity-based encryp-
tion (IBE); attribute values are incorporated into the iden-
tity, and the credential issuer’s public key is the PKG public
key. In [6], Boneh and Franklin describe a suitable IBE, and
in section 1.1.2 (Delegation) describe a simple system which
includes attributes with identity.

Our work also draws much from the paradigm of trust
negotiation [11, 5, 12, 4]. Trust negotiation is based on the
idea that sensitive resources and information can be guarded
by attribute-based policies that can be fulfilled by publicly
verifiable digital credentials issued by some third party. As
with trust negotiation, users of hidden credentials set up
policies and are granted credentials with which they may
obtain access to sensitive resources. Unlike trust negotia-
tion, however, sensitive credentials and policies need not be
revealed to be used in obtaining these resources.

In 2003, Balfanz et al. [1] proposed a construct called
Secret Handshakes. In their system, Alice and Bob receive
pseudonyms from a central authority along with a corre-
sponding secret. These form a credential. Alice and Bob
must mutually authenticate, satisfying both that each has
received a credential from the same authority. Furthermore,
the authority can encode roles into the credential which can
be made part of the authentication process. For instance,
Alice can verify that Bob is a policeman, but only if she has
a driver’s license. Secret Handshakes are built from pairing-
based key agreements.

Secret Handshakes require Alice and Bob to mutually au-
thenticate using credentials from the same issuer. In con-
trast, hidden credentials allow Alice to send Bob a message
depending only on Bob’s credentials—Alice need not even
have any credentials of her own. Hidden credentials also al-
low messages to be encrypted according to complex policies,
possibly involving multiple credentials from diverse issuers.
In fact, with hidden credentials, even the issuer(s) involved
need not be overtly disclosed. This may be useful if associ-
ation with certain organizations is considered sensitive.

Li, Du, and Boneh describe Oblivious Signature-Based
Envelopes (OSBE) [9] as a means to resolve circular depen-
dencies in automated trust negotiation. OSBEs are similar
to hidden credentials in that the ability to read a message
is contingent on having been issued the required secret. Be-
cause OSBEs reveal the contents of the credential, they have
the advantage of allowing more general compliance checking,
such as checking credential chains. OSBEs also can be im-
plemented using existing X.509 certificates with RSA signa-
tures. However, OSBEs require that Alice and Bob agree on
the signature Bob needs to have to decrypt Alice’s message.
In other words, Alice needs to disclose her policy to Bob,
who must then reveal his entire credential, minus the sig-
nature, before they can proceed. Hidden credentials avoid
this, allowing Alice to send Bob a message without disclos-
ing what credential he must use to decrypt it. This can

be very significant if the policies or credential in question
are extremely sensitive. In situations where credentials and
policies are not sensitive, however, hidden credential users
can provide the contents of their policies and credentials,
resulting in behavior similar to that of OSBEs.

Prior work in trust negotiation has explored the issue
of policy sensitivity. Bonatti and Samarati [5] proposed a
framework for regulating service access and information re-
lease on the Web. Sensitive requirements are not disclosed
to strangers, but must first be satisfied before a transaction
can progress. Seamons et al. [10] introduced policy graphs
to safeguard sensitive policies from unauthorized access. Yu
and Winslett [13] proposed a unified scheme to treat policies
as first-class objects and protect them like any other sensi-
tive resource. Hidden credentials are another approach that
can be used to safeguard sensitive policy information. Some
of these approaches assume that sensitive policies are grad-
ually disclosed over multiple rounds of negotiation. Hidden
credentials allow the entire procedure to be condensed in a
single message. All previous approaches sometimes require
a stranger to submit or use a credential without absolute
knowledge that the credential is relevant to the sensitive
policy that has not been disclosed. This requirement is mit-
igated if the stranger has only a few credentials. Sometimes,
the context of the interaction will focus the negotiation on
just the few relevant credentials. However, with hidden cre-
dentials, there is no loss of privacy in trying all relevant
credentials.

3. DEFINITIONS
Simple Policy A simple policy is a pair (attr, Pub) where
attr is a set of one or more attributes (not including iden-
tity) and Pub is the public key of the credential author-
ity (CA) needed to verify those attributes. Note that this
makes (“member”, PubNRA) and (“member”, PubNSA) two
distinct policies. The fact that one owns or requires a cre-
dential issued by a specific CA may be as sensitive as the
attributes contained therein. Consequently, credential indis-
tinguishability (defined below) requires protection of both
the attributes and CA public keys specified by policies.

The exact form of attr should be well specified so that
anyone can easily generate the unique representation of the
desired attributes. That way, senders don’t have to inform
recipients of their policies, and recipients don’t have to re-
veal the attributes expressed in their credentials. In some
cases, though, it may be desirable for the intended recipient
of a message to specify the attributes expressed in his cre-
dentials, for example when a sender’s policy requires that
a “State” attribute be represented as an element of a set
of bit strings {“California”, “Florida”, “Ohio”, ...}. Rather
than constructing a complex policy consisting of the OR of
all acceptable strings, it may be preferable for the recipient
to specify his attribute to expedite the transaction. In this
case, hidden credentials become largely isomorphic to tradi-
tional credential systems, and can make use of X.509, XML
or other types of accepted certificate formats.
Complex Policy A complex policy is a monotonic Boolean
expression of one or more simple policies which must be sat-
isfied to decrypt a resource. The form a complex policy
takes is determined by the secret splitting scheme selected
for the implementation. The original scheme proposed in
[8] allows policies to be expressed as monotonic Boolean
functions as well as MofN threshold operations. The spec-

ification of our improved scheme only includes monotonic
Boolean functions, but could be extended to include secret
shares from other schemes as the original scheme did.
Credential In our system a credential is a tuple
(nym, attr, Pub, sig) where nym is the (pseudo-)identity of
the credential holder. (attr, Pub) form a simple policy, and
sig is the signature on both attr and nym made with the
secret key corresponding to the public key Pub. That is,
the CA issues a credential asserting that nym has attribute
attr by providing sig to the owner of nym. Note that sig is
the only thing which is known only to the credential holder
(and CA), and must be kept secret.
Credential Indistinguishability A Hidden Credential Sys-
tem has credential indistinguishablity if and only if a recip-
ient can only determine which policy was used to encrypt a
message if he fulfills that policy. Specifically, credential in-
distinguishability implies that no polynomial-time bounded
adversary A has a non-negligible advantage in winning the
following game against a challenger: A makes any number
of requests for a randomly generated CA public key or pri-
vate key corresponding to an identity of his choosing for a
total of t requests. A then chooses an identity nym and
two simple policies P0 and P1 for which he has not received
the corresponding credentials. He sends these two policies,
along with nym and a message M of his choosing, to the
challenger. The challenger chooses a random bit b ∈ {0, 1}
and encrypts M against Pb and nym. He returns the re-
sulting ciphertext to A. A makes any number of requests
for additional CA keys or private keys for identities other
than the challenge identity, then eventually outputs a guess
b′ ∈ {0, 1} for b. A wins if b′ = b. A hidden creden-
tial system is said to have credential indistinguishablity if
|Pr[b′ = b] − 1

2
| < 1/f(t) for any polynomial f(t).

Policy Indistinguishability Credential indistinguishabil-
ity can extend to complex policies as well. We define a sys-
tem to have full policy indistinguishability if a polynomial-
time bound adversary is unable to gain a non-negligible ad-
vantage in winning the above game for any two complex
policies P0 and P1 for which he does not possess a com-
plete satisfying set of credentials. Partial policy indistin-
guishability asserts that such an adversary is unable to gain
a non-negligible advantage in the above game for any two
policies for which he has no relevant credentials, but does not
guarantee an advantage cannot be obtained if the adversary
partially fulfills one or the other of them. Note that each
of these properties implies credential indistinguishability as
well, since all simple policies are also complex policies.

Weak policy indistinguishability means that a system lacks
even partial policy indistinguishability. An example of a
system with weak policy indistinguishability is the origi-
nal secret splitting scheme, whose shares leak information
about the Boolean expressions they represent. Our im-
proved scheme provides at least partial policy indistin-
guishability. There are several anonymous secret splitting
schemes which might be able to provide full policy indistin-
guishability, but these tend to involve much more overhead
and are left as an avenue for future research.

We note that to achieve more than partial policy indis-
tinguishability, the correct decryption of a secret share ac-
cording to a simple policy must be indistinguishable from
decryptions performed with incorrect credentials. Other-
wise, any secret splitting scheme used to enforce complex
policies will necessarily reveal any credentials used in the

access structure to recipients who possess those credentials,
even if those credentials are insufficient to satisfy the policy,
since the recipient will be able to recognize which credentials
he used in producing correct decryptions of secret shares.
Hidden Credential System A hidden credential system
consists of the four algorithms defined below. Optionally, a
setup phase precedes these in cases where a set of system
parameters needs to be conventionally agreed upon to ensure
indistinguishability between credential authorities.

• Create CA

To create a Credential Authority, generate a private
key and publish the corresponding public key. CAs
can be created at any time.

• Issue

Create a credential certifying that the user identified
by nym possesses the attribute(s) designated in attr.

• Encrypt

Encrypt a message guarded by a policy P with a spe-
cific intended recipient identified by nym, and return
the ciphertext. Encrypt should be secure against cho-
sen ciphertext attacks and must provide credential in-
distinguishability as defined above.

• Decrypt

Attempts decryption of a ciphertext, returning the
plaintext if and only if the set of available credentials
issued with respect to nym is sufficient to satisfy P.

4. IMPROVING PERFORMANCE
Holt et al. [8] describe a hidden credential system built

from the FullIdent Identity Based Encryption system in [6].
In this section, we describe how to achieve an order of mag-
nitude improvement in performance when using policies in-
volving multiple credentials. First we specify our modified
system. Then we prove in section 4.1 that individual secret
shares are secure. Section 4.2 shows that ciphertexts created
by Encrypt can only be decrypted by qualified recipients.
Section 4.3 then shows how adaptive chosen ciphertext se-
curity can be added to Encrypt.

BasicIdent, given in [6], is a simplified version of FullIdent
which omits integrity protection and thus chosen ciphertext
security. We regain chosen ciphertext security by providing
message authentication as part of the encryption function.
BasicIdent produces ciphertexts of the form 〈U, V 〉, where
U is a randomizing value. U is used with a bilinear map
and hashed to produce a pad. That pad is XORed with the
message to produce V .

We prove that U can be reused across several ciphertexts
in BasicIdent. This allows the decryptor to perform a single
pairing operation whose result can be reused when attempt-
ing to decrypt many ciphertexts. Since pairings dominate
the cost of IBE operations in current implementations, this
optimization reduces the cost of decrypting multiple cipher-
texts from a value linear in the number of credentials to a
cost which is nearly constant, as our performance results
indicate.

Here we define an implementation of hidden credentials
modeled after the original specification and prove that it
meets the definition given above.

• Setup

A public value params is conventionally agreed upon
for use by all users, almost identical to the values cho-
sen in the Setup phase of BasicIdent. As in the original
hidden credential specification, the point P is used by
everyone, rather than being chosen independently by
each CA. Additionally, we require that one of the hash
functions accept a second argument which is used like
the counter in CTR mode encryption. We also spec-
ify encryption and decryption functions E and D for
encrypting the actual message to be sent.

Additionally, we assume a security parameter k and
selection of an appropriate secret splitting scheme.

params = 〈q, G1, G2, ê, n, P, H1, H2, E ,D〉

where q is a large prime number, G1 and G2 are two
groups of order q, ê is an admissible bilinear map from
G1 × G1 → G2 for which the Bilinear Diffie-Helman
Assumption as defined in [6] holds. P is an arbitrary
generator in G1. H1 and H2 are cryptographic hash
functions such that H1 : {0, 1}∗ × {0, 1}∗ → G∗

1 and
H2 : G2 × Z

+ → {0, 1}l where l is the length of the
shares as defined by the secret sharing algorithm.

E is a semantically secure symmetric encryption func-
tion with integrity of ciphertexts as defined in [2].
Ds(Es(m)) = m for the corresponding decryption func-
tion D, but without explicit knowledge of s it is compu-
tationally infeasible to generate a ciphertext W such
that Ds(W) does not fail. In other words, E is se-
cure against existential forgeries. This can be done
by letting Es(m) be the encryption of m with a se-
mantically secure symmetric encryption function along
with a MAC of the resulting ciphertext that is secure
against existential forgeries. D returns the correspond-
ing decryption if the MAC is correct, and returns fail-
ure if it is not.

Note that H1 must be collision resistant across both
its variables. For instance, H1(“ab”, “c”) must not pro-
duce the same value as H1(“a”, “bc”), since it would
then be possible to find multiple (nym, attr) pairs that
would produce the same keys, encryptions, and de-
cryptions.

• Create CA

Each CA chooses a random private key α ∈
� ∗

q and
publishes its public key Pub = αP . CAs can be cre-
ated at any time.

• Issue

A CA issues a credential fulfilling a policy (attr, Pub)
by computing sig = αH1(nym, attr) where nym is the
(pseudo)nym of the intended credential holder.

A CA issues a credential fulfilling a policy (attr, Pub)
by computing sig = αH1(nym, attr) where nym is the
(pseudo)nym of the intended credential holder.

• Encrypt

To encrypt a message M for a recipient designated by
nym using the policy P, first generate a random bit
string s ∈ {0, 1}k and a random value r ∈

� ∗
q . Split s

according to P and the secret splitting scheme of choice

to create n secret shares s1, ..., sn, to be encrypted
against corresponding simple policies p1, ..., pn. Each
simple policy pi consists of a pair (attri, Pubi). Con-
struct the ciphertext as follows:

C = 〈rP, s1 ⊕ σ1, s2 ⊕ σ2, ..., sn ⊕ σn, Es(M)〉

where

σi = H2(ê(Pubi, Qi)
r, i) and Qi = H1(nym, attri)

• Decrypt

Upon receipt of a ciphertext C = 〈U, V1, V2, ..., Vm, W 〉,
the recipient first finds all possible plaintext shares sij

by calculating

sij = Vi ⊕ H2(ê(U, sigj), i)

for each Vi and each of his credential signatures sigj .
The bilinearity of ê implies that ê(αP, Q)r = ê(rP, αQ),
which allows decryption using the signature instead of
knowing r as the sender did. Of course, sij will be non-
sense unless sigj belongs to the right credential. The
secret splitting scheme is left to define how the recipi-
ent recognizes correct decryptions, if such decryptions
are to be recognized at all.

If he has a satisfying set of shares in his collection of
sij , he can use these to recover s and attempt Ds(W)
which will indicate successful recovery of the message
M .

Implementation note: In practice, it may be possi-
ble to replace H2 with a stream cipher suitable for ran-
dom number generation keyed with ê(U, sigj). Then, rather
than running H2 for each attempt at decrypting a key share,
treat (V1, ..., Vn) as a single ciphertext and generate enough
keystream to decrypt the entire concatenation. Encryption
likewise requires generating the same keystream for a par-
ticular Vi.

4.1 Reusing rP
Here we show that reusing the value rP does not com-

promise the semantic security of BasicIdent. Consequently,
our specification of secret share encryption in the Encrypt
function is also IND-ID-CPA secure, producing secret shares
secure against unqualified recipients, since each secret share
Vi is essentially a BasicIdent encryption reusing rP . Section
4.2 shows that if encrypted secret shares are individually se-
cure, messages sent using Encrypt are likewise secure.

[6] defines an IND-ID-CPA game for BasicIdent in which
an adversary tries to distinguish which of two messages of
his choosing was encrypted by a challenger to form a chal-
lenge ciphertext. The adversary queries the random ora-
cle H2 and can make extraction queries which return pri-
vate keys for identities of his choosing. He submits a chal-
lenge identity whose private key he has not received, two
equal length messages s0 and s1, and receives a challenge
ciphertext C = 〈rP, sb ⊕ H2(ê(αP, Qid)r))〉. He is then
allowed more extraction and H2 queries, and ultimately
guesses which message was encrypted. [6] shows that if
he has any significant advantage over random guessing, the
BDH assumption must be false.

We extend this game to show that reuse of rP is safe by
adding the ability for the adversary to make reuse queries.
He specifies a message and an identity different from the

challenge identity, and receives the encryption of that mes-
sage against that identity using the same rP used in the
challenge ciphertext. We show that such queries give the
adversary no advantage in winning the unmodified IND-ID-
CPA game for BasicIdent. Our first proof shows that reuse
of rP is safe for an unmodified BasicIdent as long as each
BasicIdent ciphertext uses a different id. But since complex
policies may specify the same simple policy (and hence the
same identity string) multiple times, we give a second proof
which shows how our addition of an index variable to H2

makes rP reuse possible even with reused identity strings.
Consequently, each encrypted share Vi produced by Encrypt
is secure against chosen plaintext attack despite sharing the
value rP with many other shares.

Theorem 4.1. Reusing rP does not compromise the se-
mantic security of the BasicIdent system proposed in [6]
as long as rP is not reused on the same id. Concretely,
suppose there is an IND-ID-CPA adversary A that has ad-
vantage ε(k) against the BasicIdent system when the value
rP is reused. Suppose A makes at most qE private key
extraction queries, qH2

hash queries to H2, and qR reuse
queries. Then there is an IND-ID-CPA adversary B with
runtime (time(A)) that has an advantage ε(k) against the
BasicIdent system making at most qH2

+ qR hash queries
and qE +qR private key extraction queries.

Proof. We construct an algorithm B that interacts with
A as follows, mirroring the game defined in [6]:

Setup: Algorithm B starts by giving A the BasicIdent sys-
tem parameters.

Private key extraction queries and H2 queries: Al-
gorithm B responds to any valid extraction or H2 query by
passing the query on to the challenger and returning the re-
sult.

Reuse queries: A makes a reuse query by specifying a
message s, identity id and a point rP . B runs an extraction
query on id to get αQid, and returns an encryption of s
using rP , taking advantage of the bilinearity of ê:

〈rP, s ⊕ H2(ê(rP, αQid))〉 = 〈rP, s ⊕ H2(ê(αP, Qid)r)〉

Phase 1: Algorithm B responds to extraction and H2 queries
as described above.

Challenge: Once algorithm A decides that it is done with
phase 1, it outputs an identity idch it wishes to be challenged
on for which it has not performed an extraction query, as
well as two equal-length messages s0 and s1. Algorithm B
gives this same challenge to its challenger and sends A the
challenge ciphertext C = 〈U, V 〉 = 〈rP, sb⊕H2(ê(αP, Qid)r)〉,
an encryption of sb where b ∈ {0, 1} is chosen at random by
B’s challenger.

Phase 2: Algorithm B responds to extraction, H2 and reuse
queries as above, with the condition that id 6= idch for reuse
and extraction queries.

Guess: Algorithm A outputs a guess b′ for b. Algorithm B
returns b′ as its guess to the challenger and wins if b′ = b.

It is clear to see that B has the same advantage as A in

winning the game. Algorithm B makes exactly one extrac-
tion query for each extraction and each reuse query of A,
so the total number of extraction queries is qE +qR as re-
quired. By the same logic the total number of hash queries
is qH2

+qR. Boneh and Franklin proved in [6] that in the
random oracle model the probability for success of such an
attack is negligible under the BDH assumption.

This shows that reusing rP is safe when using an oth-
erwise unmodified BasicIdent with differing identity strings.
Likewise, reusing rP for messages with different CAs is some-
thing the adversary can already do, since anyone can create
a CA, extract the private key for any identity and create
ciphertexts which reuse rP . This has implications for us-
ing the Frankiln/Boneh IBE system outside of hidden cre-
dentials. For example, when sending an email to multiple
recipients, one can use the same rP for everyone.

The remaining change which must be addressed is the
addition of the index parameter i to H2. This may also
have applicability outside of hidden credentials; by using a
unique nonce for the index parameter, multiple messages can
be sent to a single recipient without the need to recalculate
either rP or the bilinear map. Note that this addition alone
is actually sufficient to allow reuse of rP , but we found it
particularly interesting that rP can safely be reused even
without the index i.

Theorem 4.2. Adding an index parameter to the hash
function H2 prevents an attacker from learning any infor-
mation about shares that were encrypted against the same
identity. Concretely, suppose there is an IND-ID-CPA ad-
versary A that has advantage ε(k) against the BasicIdent
system when the value rP is reused with different indexes.
Suppose A makes at most qE private key extraction queries,
qH2

hash queries to H2, and qR reuse queries. Then there is
an IND-ID-CPA adversary B with runtime (time(A)) that
has advantage ε(k) against the BasicIdent system, making
at most qE +qR private key extraction queries and qH2

+qR

hash queries.

Proof. Let Blockl(x, i) denote the ith block of length l
of the binary string x. That is, Blockl(x, i) is bits (i−1)·l+1
to i · l of x.

We construct an algorithm B that interacts with A as fol-
lows:

Setup: Algorithm B starts by giving A the BasicIdent sys-
tem parameters.

Private key extraction queries: Algorithm B responds
to any valid query by passing the query on to its challenger
and returning the result.

H2 queries: Algorithm B responds to an H2 query H2(X, i)
by querying its challenger for H2(X) and returning
Blockl(H2(X), i).

Reuse queries: Algorithm B responds as follows to a reuse
query on a message s, an identity id, a point rP , and an
index i, where i 6= ich if id = idch:

• if id 6= idch, B runs an extraction query on id to get
αQid and returns 〈rP, s ⊕ Blockl(H2(ê(rP, αQid)), i)〉

• if id = idch, B returns 〈rP, s ⊕ Blockl(V, i)〉

Phase 1: Algorithm B responds to extraction and H2 queries
as described above.

Challenge: Once algorithm A decides that it is done with
phase 1, it outputs an identity idch it wishes to be chal-
lenged on, as well as two messages s0 and s1 and an in-
dex ich. Algorithm B constructs two messages s′0 and s′1
such that Blockl(s

′
0, ich) = s0, Blockl(s

′
1, ich) = s1, and

Blockl(s
′
0, i) = Blockl(s

′
1, i) = 0l for i 6= ich. He gives s′0

and s′1 to the challenger who returns the challenge ciphertext
C = 〈U, V 〉, an encryption of s′b where b ∈ {0, 1} is chosen
at random by the challenger. B returns 〈U, Blockl(V, ich)〉
to A.

Phase 2: Algorithm B responds to extraction and reuse
queries as above, with the condition that id 6= idch for ex-
traction queries and that id 6= idch or i 6= ich for reuse
queries.

Guess: Algorithm A outputs a guess b′ for b. Algorithm B
returns b′ as its guess to the challenger and wins if b′ = b.

It is clear to see that B has the same advantage as A
in winning the game. Algorithm B makes exactly one ex-
traction query for each extraction query of A, so the total
number of extraction queries is qE +qR as required. Algo-
rithm B also makes one H2 query for each H2 query of A,
and up to one H2 query for each reuse query, so the total
number of H2 queries by B is at most qH2

+qR.
What remains to be shown is that the reuse queries re-

turned are the correct ciphertexts.
If id 6= idch, ê is used as in the last proof to create the

appropriate ciphertext.
If id = idch, note that i 6= ich, so we have

Blockl(V, i) = Blockl(s
′
b ⊕ H2(ê(αP, Qid)r), i)

= Blockl(s
′
b, i) ⊕ Blockl(H2(ê(αP, Qid)r), i)

= 0 ⊕ H2(ê(αP, Qid)
r, i)

= H2(ê(αP, Qid)r, i)

So the returned ciphertext 〈rP, s ⊕ Blockl(V, i)〉 is a valid
encryption of s against id using the same rP .

Again, the probability of such an attack succeeding is neg-
ligible if the BDH problem is hard.

4.2 Security of Encrypt

Theorem 4.3. A recipient R possessing a satisfying set
of credentials for a policy P can recover M from the cipher-
text C = Encrypt(M, nym,P).

Proof. Let C = 〈U, V1, V2, ...,W 〉, where each Vi is an
encrypted secret share protecting a master secret s, and
W = Es(M). Since R has a satisfying set of credentials,
she can decrypt secret shares sufficient to recover s. Then
M = Ds(M).

Theorem 4.4. Assuming the BDH problem is hard, the
secret splitting scheme is information theoretically secure,
and E is semantically secure, an adversary A without a sat-
isfying set of credentials for the policy P cannot recover the
message M from the ciphertext C = Encrypt(M, nym,P)
with a lower work factor than is required to break BasicI-
dent or E.

Proof. Let C = 〈U, V1, V2, ...,W 〉, where each Vi is an
encrypted secret share protecting a master secret s, and
W = Es(M). By theorem 4.2, any reasonable adversary
who can recover a secret share for which he does not pos-
sess the required credential can also compromise BasicIdent,
contradicting the BDH assumption [6]. Therefore, A cannot
recover a satisfying set of secret shares and learns nothing,
in an information theoretic sense, about s. Without s, re-
covering M from W requires compromising E .

4.3 Adaptive Chosen Ciphertext Security
This section shows how Encrypt can be changed so that

a complete ciphertext remains secure even in the presence
of a decryption oracle.

The BasicIdent system as presented in [6] does not pro-
vide chosen ciphertext security. Boneh and Franklin use the
Fujiaski-Okamoto transformation from [7] to provide chosen
ciphertext security in their FullIdent IBE system. Unfor-
tunately, the way in which the Fujisaki-Okamoto transform
is applied reveals the value r to the recipient, making FullI-
dent unsuitable for use with Hidden Credentials which reuse
rP , and possibly allowing him to discover parts of the policy
that he does not fulfill.

In our system, adaptive chosen ciphertext security can
be added as follows: Rather than encrypting the message
with the master secret s, one can encrypt it with κ =
H3(s, V1, ..., Vn) where H3 : K × {0, 1}∗ × · · · × {0, 1}∗ → K
is a cryptographic hash function where K is the keyspace of
E . We now provide adaptive chosen ciphertext security by
leveraging the integrity protection properties of E . Because
E has integrity of ciphertext, it is computationally infeasible
to generate a ciphertext W such that Dκ(W) does not fail
without explicit knowledge of κ. Specifically, let the proba-
bility that Dκ(W) does not fail for a W constructed without
knowledge of the key κ be no greater than ε(k) where ε(k)
is negligible in the security parameter k. We assume that
1/|K|, where |K| is the size of the keyspace of E , is also
negligible with respect to the security parameter.

Theorem 4.5. Giving an attacker access to a decryption
oracle does not give an attacker a non-negligible advantage
against a challenge ciphertext.

Proof. Let A be an adversary who is being challenged
on a ciphertext C = 〈U, V1, V2, ..., Vm, W 〉. A makes a de-
cryption query on the ciphertext

C ′ = 〈U ′, V ′
1 , V ′

2 , ..., V ′
m′ , W ′〉

Suppose W ′ = W . If no master secret is discovered in the
decryption of C ′ then the decryption oracle outputs fail-
ure. Otherwise call the recovered master secret s′. Let κ =
H3(s,U, V1, V2, ..., Vm) and κ′ = H3(s

′, U ′, V ′
1 , V ′

2 , ..., V ′
m′).

Because A is not allowed to request the decryption of the
ciphertext he is being challenged on,

〈U ′, V ′
1 , V ′

2 , ..., V ′
m′〉 6= 〈U, V1, V2, ..., Vm〉

and hence Pr[κ′ = κ] = 1/|K|. So if W ′ = W then D′
κ(W)

fails with probability at least 1 − (1/|K| + ε(k)).
Suppose W ′ 6= W . Either W ′ = Eκ(M) for some key κ

known to A (in which case the decryption oracle yields no
additional information) or Dκ(W ′) fails with probability at
least 1 − ε(k).

In either case, the decryption oracle does not provide
any additional information with overwhelming probability.

Thus, access to a decryption oracle does not provide a non-
negligible advantage against the challenge ciphertext.

5. SECRET SPLITTING
In hidden credentials, access to a resource is granted based

on the satisfaction of a policy defined as an access control
structure in a secret splitting scheme. Many general secret
splitting schemes have been proposed, and most of them can
be used with hidden credentials by creating secret shares
that correspond to credentials the recipient may hold, then
encrypting each share against its required credential.

5.1 Policy Concealment
Still, care must be taken in choosing a secret splitting

scheme in order to maximize policy indistinguishability. The
form of an access structure, or even just the number of terms
it contains can leak information. For example, consider an
attacker named Mallory trying to learn information about
a secure database. Each time he sends a request to the
database, it returns a response encrypted against some set of
hidden credentials chosen according to the database’s access
policy for that entry. The database doesn’t want to reveal
which entries exist in the database and which don’t, so it
always responds to requests for nonexistent entries with a
fake response encrypted against credentials which are never
issued to anyone (“NAK” credentials).

If we assume that Mallory has no valid hidden creden-
tials, then he should not be able to learn anything about
the database, including what entries it contains. But what
if the secret splitting scheme implicitly reveals information
about the access structure? For example, Mallory might be
able to infer, based on the size of the encrypted secret shares
returned by the database, that the access policy for a par-
ticular resource is ? ∧ (?∨?). That is, Mallory doesn’t learn
what credentials correspond to each ?, but he does learn that
the policy consists of an AND and an OR. If the database
always uses the same access structure when returning re-
sponses for nonexistent entries, we have a problem. Mallory
simply asks for an entry which he knows is nonexistent, and
examines the access structure of the response. Now he knows
that any time he makes a request and receives a response
with a different access structure, that entry must exist in
the database, even if he can’t actually learn anything about
its value.

The following aspects of a secret splitting scheme can all
leak information about a transaction:

• The form of the access structure, eg. ? ∧ (?∨?)

• The number of credentials involved in the access struc-
ture

• Which credentials possessed by the recipient contribute
to partial fulfillment of the access structure. For ex-
ample, learning that a particularly sensitive credential
was necessary but not sufficient to satisfy the access
structure suggests that the resource itself is quite sen-
sitive.

A system with full policy indistinguishability would leak
no information about any of these aspects to recipients who
don’t completely satisfy the access structure. As we stated
earlier, our improved scheme provides partial policy indis-
tinguishability, whereas the original scheme provided only
weak policy indistinguishability.

5.2 Improved Secret Splitting
In the original hidden credential specification [8], encrypt-

ing a message M according to a policy (X ∧ Y) ∨ Z pro-
duces a ciphertext {EX(EY (M)), EZ(M)}, where EX(M)
denotes encryption of M according to simple policy X. The
Boneh/Franklin IBE system produces ciphertexts longer than
the input plaintext, so the recipient can easily discern that
the first term in the ciphertext involves a double encryp-
tion and therefore has an AND structure. The second term
reveals that an OR is present, since ORs always produce ad-
ditional terms. Consequently, with no decryption effort at
all, the recipient knows that the policy used was (?∧?)∨?.

Additionally, the original specification assumed that the
recipient was provided a way to recognize correct decryp-
tions of elements in the ciphertext. That is, decrypting the
first term in the example above with the X credential pro-
duces a “correct” decryption, implicitly revealing that X
is part of the policy. Of course, without the X credential,
the recipient can’t attempt decryptions of the inner EY (M)
even if he has Y . But he can learn about X’s presence in
the policy if he has it.

Our system improves both of these shortcomings. Rather
than receiving a structured ciphertext with elements of var-
ious sizes, the recipient gets a number of secret shares, all
of equal size. The number of shares places an upper bound
on the number of terms in the policy, but not a lower bound
since the sender can include any number of bogus shares
with only a marginal increase in overhead.

Furthermore, message recipients only learn portions of an
unfulfilled policy if they can satisfy a complete subexpres-
sion. That is, in a policy of ((W ∧X)∧Y)∨Z, the recipient
only learns that credentials W and X are in the policy if he
possesses both of them.

Finally, our system includes ambiguity about partial pol-
icy fulfillment. In the above example, if the recipient has cre-
dentials W and X, he learns that they are probably part of an
AND subexpression, but is left with some chance that they
were incorrect decryptions which just happened to match
up. This type of ambiguity can be hard to preserve across
multiple transactions, and so we leave it mostly as an av-
enue for future research. We treat the topic briefly in the
Parameter Selection section below.

Overview. We propose a modification of the simple se-
cret splitting system found in [3]. In that system, if either
of secret shares X OR Y is sufficient to recover a secret s,
we simply set X = s and Y = s. If X AND Y are both
required to recover s, we generate a random pad v and set
X = s ⊕ v and Y = v. Recursively applying this procedure
allows us to split a secret s into a set of shares {s1, ..., sm}
for any monotonic Boolean access structure. That is, s can
be recovered if and only if one possesses a satisfying set of
secret shares. Each one of the shares is a bit string of equal
length to the original secret.

In our modified system, rather than overtly giving the
access structure, we mark the shares at each step. First, we
mark the ultimate secret s with a prefix d to indicate when
s has been successfully recovered. To split s using an AND
structure, we prepend a set number of random bits to each
share after applying the random pad. When both shares are
recovered, their matching prefixes identify them as operands
of an AND which should be XORed together. Splitting a
secret with an OR structure produces identical shares, so no
prefix is necessary to identify the matching shares.

We also pad all shares on the right to make each have the
same length, so that the number of prefixes prepended to a
given share doesn’t reveal its depth in the access structure.
This padding is added to the master secret before splitting.
All resulting shares can then be truncated to an equal length.

Definition. Our system is defined in three phases: setup,
sharing and recovery. We assume a message sender A who
will define access structures and issue secret shares to be en-
crypted against particular hidden credentials, and a recipi-
ent B with a set of credentials CB ⊂ C, where C is the set of
all possible credentials. The set of all simple policies P is de-
fined as

S

p|(p = (attr, Pub)) ∧ ((nym, attr, Pub, sig) ∈ C).
‘||’ denotes concatenation.
Setup:

1. A chooses a security parameter k.

2. A chooses a symmetric encryption function with in-
tegrity protection E and its corresponding decryption
function D, such that m = Ds(Es(m)). Integrity pro-
tection, such as a MAC, is required to allow use of
short values of the “done” prefix (defined below) with-
out leaving ambiguity as to whether the secret has
been properly recovered, and to ensure that A can-
not attack the system by creating shares which appear
to recover different secrets depending on how B satis-
fies the policy. That is, the integrity protection must
ensure that A cannot find two secrets s1 and s2 which
both provide valid decryptions of a ciphertext.

Sharing:

1. A chooses the prefix length lp

2. A chooses the “done” prefix d ∈ {0, 1}∗

3. A chooses a secret s′ ∈ {0, 1}k to split according to an
access structure f . The Encrypt algorithm encrypts
her message m to produce ciphertext = Es′(m).

4. The “done” prefix d is prepended to s′ to indicate when
s′ has been successfully recovered. Then s′ is padded
to the right with a random value v ∈ {0, 1}lp|S|, where
|S| is the total number of secret shares (including bo-
gus shares) which will be produced. For convenience
in this specification we call the chosen secret s′ and
define s = d||s′||v. We call l = |s| the share length,
since all shares will be this size.

5. A chooses f , a monotonic Boolean formula defined in
terms of credentials in C.

6. f is recursively evaluated to produce a set of shares S,
one for each operand in f . A calls Split(s, f), where
Split is defined as follows:

if f = f0 ∨ f1,

(a) call Split(s, f0)

(b) call Split(s, f1).

if f = f0 ∧ f1,

(a) truncate the rightmost lp bits of padding from s

(b) choose a random prefix p ∈ {0, 1}lp

(c) choose a random pad v ∈ {0, 1}l−lp

(d) call Split(p||(s ⊕ v), f0)

(e) call Split(p||v, f1).

if f is a simple policy,

(a) Add a share to S along with its simple policy p.
S := S ∪ (s, p). The Encrypt algorithm handles
encryption of s against p.

7. A creates a number of bogus shares so that the number
of shares in S doesn’t reveal the number of terms in
f . Each bogus share is chosen at random as v∈{0, 1}l,
and then (v, NAK) is added to S, where NAK is a
policy for a credential that is never issued to anyone.

8. A randomly rearranges the shares in S so that the
position of a share doesn’t leak information about f .

9. A sends Encrypt’s encryption of S and M , along with
the unencrypted values (lp, d, k), to B.

Recovery:

1. B creates an empty table T = {}

2. For each si ∈ S,

(a) Iterate over the credentials cj ∈ CB and add each
attempt at decrypting cj with si.

(b) If any two elements ta, tb ∈ T are equal, remove
one of them from T . (ta and tb are operands of
an OR).

(c) If any two elements ta, tb ∈ T begin with the
same prefix, strip the prefix off and add the XOR
of the two elements to T. (ta and tb are prob-
ably operands of an AND). That is, ∀{ta, tb} ∈
T × T, IF ∃p ∈ {0, 1}lp |(ta = p||x) ∧ (tb =
p||y) THEN T := (T ∪ x ⊕ y).

(d) If any element ta ∈ T has the “done” prefix, then
s′, where ta = d||s′, is the secret with probabil-

ity 1 in 2|d|. If m = Ds′(ciphertext) indicates
successful decryption, m has been successfully re-
covered. Halt.

Once B has recovered a valid secret, he may wish to con-
tinue the algorithm rather then halting, to determine if there
are any other ways in which the policy might be satisfied.
This can be beneficial if he wishes to reveal to A that he suc-
cessfully recovered s′. For example, if recovering s′ required
B to use c1, a very sensitive credential, B may be unwilling
to reveal to A that he successfully recovered s′, because it
implicitly reveals his possession of c1. On the other hand,
if s′ could be recovered with either of c1 or c2, where c2 is
a non-sensitive credential, then B can respond as if c2 were
the only credential he owned.

5.3 Parameter Selection
Prefix length. One parameter in our system, the prefix

length lp, must be chosen with care to ensure termination of
the recovery algorithm. Prefixes indicate whether two shares
form arguments to a simple AND subexpression of the ac-
cess structure. Since incorrect decryptions are assumed to
produce essentially random prefixes, the birthday paradox
predicts that random prefixes of length n will produce a

false match in a set with about 2n/2 random elements. Such
false positives increase storage and computational costs in
the recovery phase, but decrease how much a recipient learns
about a policy which he only partially satisfies. If the pre-
fix length is set too low, recovery can actually become in-
tractable. Consider a prefix of zero length—all terms would
“match”, producing new terms which would also match all
the others, ad infinitum. Share lengths are finite, so this
process would terminate eventually for any non-zero prefix
length, but would take an exponential amount of time. Our
results indicate that 16-bit prefixes provide some ambiguity,
but still ensure that, with a probability of less than 2−100 for
even reasonably large tables, the table will not even double
in size as a result of false positives.

In any case, such ambiguity only extends to operands of
AND subexpressions, since operands of an OR are identical
in all their bits. Expressing the formula as a sum of products
reduces the number of OR terms at the terminating level of
the tree. It should be noted, however, that no information
about either the OR or AND operands is revealed unless one
has both of two corresponding shares.

It should also be noted that the ambiguity provided by
short prefixes is fragile. If a recipient can request multiple
ciphertexts encrypted with the same policy, he can quickly
separate false positives from the matches which occur every
time. The nature of the resource itself and the policies gov-
erning related resources can also provide clues as to which
credentials are likely to be involved in a particular policy.
Future work may treat this idea in more depth and explore
ways to further exploit such ambiguity, such as extending it
to OR subexpressions.

The “done” prefix. d may have any value, but its length
is significant. Incorrect decryptions of secret shares will pro-
duce d as a prefix with probability 2−|d|, so d should be cho-
sen large enough to avoid too many false positives, but small
enough that encrypted shares are of reasonable length. The
length of d does not impact policy indistinguishability, as
an incorrect value of s′ is easily identified by the integrity
protection in the encryption algorithm.

Bogus shares. The time required to decrypt a message
in our system is presently dominated by the number of el-
liptic curve operations, which in the improved decryption
algorithm is only determined by the number of credentials
held by the recipient. Consequently, adding bogus shares
does not significantly impact the runtime of the decryption
algorithm. In our system, encrypted shares are indistin-
guishable from random bit strings and so encryption doesn’t
suffer a performance penalty either. We recommend using
the same size ciphertext for any message, no matter how sim-
ple the policy. Simply find the upper bound for the number
of shares over all possible policies (say, the policy that would
have to be fulfilled to release all resources), add any num-
ber of additional shares to conceal that upper bound, and
use that number of total shares for all encryptions. Thus
a “NAK” policy used for nonexistent resources, consisting
entirely of bluff shares, is indistinguishable from any other
system policy to an unqualified recipient.

5.4 Performance
Share length and table size increase with the number of

secret shares. Table size also increases with the number
of credentials used for decryption. However, since prefix
lengths are typically short, on the order of 16 bits, share

length increases slowly. For very large policies, share length
could even be set to a value lower than the maximal default
specified above.

False positives can impact performance in two ways. First,
if two shares match coincidentally, an additional share is
added to the table which may in turn match with other
shares. This can be mitigated by choosing a large enough
prefix size. For example, with a prefix size of 16 bits, the
chances that n random shares will result in n false positives
using this algorithm (effectively doubling the table size) is
less than 2−100.

Secondly, false positives can also occur when a share coin-
cidentally starts with the done prefix d. If there are a total
of n shares at the termination of the algorithm, on average
n/2|d| of them will begin with d. Thus there will be very
few false positives of this type for any reasonable length of d.
Also, the symmetric key operations involved in attempting
decryption will generally be dwarfed by the elliptic curve
operations, so the few false positives that occasionally occur
will be quickly identified without much overhead. If this is
not the case (for example, if the message is in the order of
hundreds of megabytes) the length of d can be made large
enough to reduce the probability of false positives of this
sort as low as desired.

Since the recovery operations consist primarily of XOR
and comparison operations, even large tables can be pro-
cessed absurdly quickly—much more quickly than even a
single IBE operation, as our experimental results confirm.

5.5 Security of the Secret Splitting Scheme
Benaloh and Leichter [3] proved that their system provides

perfect information hiding. Our system inherits this same
perfect information hiding and our proof follows theirs.

Lemma 5.1. A recipient B who does not satisfy the cho-
sen access structure f is unable obtain any information about
s′.

Proof. We prove this by induction on the number of
terms in f .

Suppose f has only 1 term. Because B does not satisfy f ,
s′ is encrypted against a credential B does not possess, and
so B in unable to obtain any information about s′.

If f has more than one term, there are two cases:
First, suppose f = f0∨f1. f0 and f1 necessarily have fewer

terms than f . Because B does not satisfy f , he must satisfy
neither f0 nor f1, and so by induction learns nothing about
s′ from either of them. Because the shares of f0 and f1 were
chosen independently, no joint information is obtained, so
B obtains no information about s′.

Otherwise, f = f0 ∧ f1. f0 and f1 necessarily have fewer
terms than f . Because B does not satisfy f , he must not
satisfy one or more of f0 or f1. Let s0 be the share split
by f0 and s1 be the share split by f1. Because s0 and s1

are chosen uniformly such that s0 ⊕ s1 = s′, knowledge of
s0 or s1 alone does not yield any information about s′. The
prefix is chosen at random independant of s′, so it yields no
information about s′ either.

By induction on the number of terms in f , a recipient who
does not satisfy f learns nothing about s′.

Theorem 5.2. A recipient B who does not satisfy the
chosen access structure f is unable to recover the message
m.

Proof. The recovery of m depends on knowledge of the
secret s′. Therefore this theorem clearly follows from lemma
5.1.

As well as protecting the contents of the message from
unqualified recipients, our secret sharing scheme provides
the ability to better conceal the content and structure of
the policy used to construct a hidden credential ciphertext.

Theorem 5.3. When using the secret sharing scheme de-
fined above, our hidden credential system has at least partial
policy indistinguishability.

Proof. Bluff shares are, by definition, uniformly and in-
dependently distributed over {0, 1}l. Shares resulting from
invalid decryptions of Vi are also uniformly and indepen-
dently distributed over {0, 1}l because H2 was not, with
overwhelming probability, called with those arguments in
the encryption phase and is not called more than once with
those arguments in the decryption phase. So if an adversary
does not even partially fulfill a policy P then all possible
shares sij = Vi ⊕ H2(ê(rP, sigj), i) will be distributed uni-
formly and with no correlation to the policy structure due to
the hash function H2. The probabalistic value rP and the
master secret s′ are also chosen at random and independant
to the policy being used. Thus an adversary’s view will be
the same for all policies, so he cannot have an advantage in
winning a partial indistinguishability game.

Our system actually has more than just partial policy in-
distinguishability. We note that valid secret shares, with
the exception of the master secret, are uniformly distributed
over {0, 1}l because both the prefix and the random pad are
chosen uniformly over {0, 1}lp and {0, 1}l−lp respectively.
Consequently, if a recipient is able to recover at most one
valid share, he is unable to recognize it on its own. In other
words, he must fulfill at least two terms of the policy before
he discovers that he has partially fulfilled it at all. In fact,
depending on their relative position in the policy structure,
the recipient may be able to satisfy any number of insuffi-
cient terms and still not be able to tell that he has satisfied
anything at all. In any case, a recipient discovers at most
only those parts of the policy that he fulfills.

6. IMPLEMENTATION
We implemented the secret splitting scheme described in

the previous section using Java and the Stanford IBE library
(see http://crypto.stanford.edu/ibe/download.html). Our
implementation includes a hidden credential aware HTTP
server and web proxy. Client HTTP requests are processed
by the proxy and a policy is created based on the requested
URL. If the proxy is able to decrypt the web server’s re-
sponse, it returns the decrypted response to the client. Oth-
erwise it returns an authentication error and explanatory
page. We also created a server-side proxy that can provide
hidden credential-based access control to any web server.
Our implementation is released under the GPL and is avail-
able on our website.

The runtime of the hidden credential algorithms is dom-
inated by the elliptic curve operations used to implement
the Boneh/Franklin IBE. In our implementation, 95-98% of
the total runtime is spent calculating pairing operations. In
the design of the original hidden credential implementation
[8], encryption required one elliptic curve multiplication, one

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20

T
im

e
(s

ec
)

Policy Size

Original system
Improved system

Figure 1: Average encryption time vs. policy size.

elliptic curve pairing, and one modular exponentiation for
each term in the policy. Using the optimization discussed in
this paper, only one elliptic curve multiplication needs to be
computed for the entire policy, and a single pairing and ex-
ponentiation are then performed for each unique term within
the policy. Decryption sees the larger benefit, however. One
elliptic curve multiplication is required for a ciphertext, and
one pairing is then used for each credential relevant to the
transaction, regardless of the number of secret shares in the
ciphertext. The original implementation required one mul-
tiplication and pairing for each combination of a secret share
and relevant credential.

We conducted experiments to measure the actual encryp-
tion and decryption performance of hidden credentials on
an 867 MHz G4 running OS X 10.3.3 using the security pa-
rameters recommended in [6] and in the documentation of
the Stanford IBE library (i.e., letting p be a 512 bit prime
for the underlying field Fp2 , and using a 160-bit subgroup
of an elliptic curve over this field). We varied the policy
complexity from 1 to 20 unique terms in a policy, with a
50-50 ratio of ANDs and ORs randomly generated for each
policy. Sixteen-bit prefixes were used in the secret splitting
scheme.

Figure 1 shows the time required for an encryption oper-
ation across various policy sizes. For a single policy, there
is a small overhead for the optimized approach compared
to the original design. As the policy complexity grows, the
optimized system performs n − 1 fewer elliptic curve multi-
plications than the original system, where n is the number
of terms in the policy. This explains the increasing differ-
ence in performance between the two systems as the policy
size increases.

The impact of the optimized design on decryption is even
more significant than the impact on encryption. Figures 2
and 3 show the decryption time for the original hidden cre-
dential design and an optimized design, respectively. Pre-
viously, unless the policy was overtly given, one had to at-
tempt decryption of each share with each possible credential
resulting in up to mn elliptic curve operations for an n-term
policy and m candidate credentials. In practice, the num-
ber of operations required depends greatly on the policy
structure—if the first term of an AND cannot be fulfilled,
the rest of the expression is not explored, but every possi-
ble combination must be tried for an OR. In the optimized
design, a single pairing is performed for each relevant cre-
dential, regardless of how many terms are in the policy.

Pre-computation can be used to speed up the Tate pair-

ing when the first argument remains constant across several
pairings. Both the old and the new system can take ad-
vantage of this fact, but the performance difference remains
similar. In the old system O(n) pre-computations are re-
quired for the O(mn) (faster) pairings, and in the new sys-
tem a single pre-computation can then be used for all O(m)
pairings.

The decryption experiments varied the number of candi-
date credentials from 0 to 25. The experimental results in
figures 2 and 3 reveal an order of magnitude performance
improvement using the new design as the policy size and
number of candidate credentials increase.

It should be noted that all the ciphertexts used in figure 3
are indistinguishable from other ciphertexts with the same
number of secret shares, while those in figure 2 leak policy
structure. Also, had any of the simple policies been reused
in the expression, the performance benefits for encryption
and decryption using the optimized design would have been
even greater.

 0 5 10 15 20 25 Credentials 2 4 6 8 10 12 14 16 18 20

Policy Size

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Time (sec)

Figure 2: Original system: Decryption time as

a function of policy size and the number of cre-

dentials held.

 0 5 10 15 20 25 Credentials 2 4 6 8 10 12 14 16 18 20

Policy Size

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Time (sec)

Figure 3: New system: Decryption time as a

function of policy size and the number of cre-

dentials held.

7. CONCLUSIONS AND FUTURE WORK
We have drastically improved the efficiency of hidden cre-

dentials by reusing randomness in a way that does not com-
promise the security of the system. The number of elliptic
curve operations required now depends only on the number
of credentials relevant to a transaction and is constant over
a change in policy size or complexity.

We also pioneered a perfect monotonic secret splitting
scheme where the relevant shares and the corresponding
Boolean expression are only revealed as relevant pairs of
shares are discovered. Using this secret splitting scheme we
are able to extend indistinguishability to complex policies.
This secret splitting scheme has applicability outside hidden
credentials which we will explore in future work.

Hidden credentials have advantages in policy, credential,
and resource protection that no other system we are aware of
has. The advances we presented here are essential to achieve
the full potential of concealed policies and make the use of
hidden credentials a usable model for protecting sensitive
resources.

Reducing prefix length in our secret splitting scheme in-
creases anonymity but also increases overhead and the prob-
ability of a runaway table. We plan to investigate more
fully the exact relationship between prefix length, number
of shares, and the probability that the secret splitting algo-
rithm terminates. This may make it possible to continue
to guarantee the algorithm’s termination in a reasonable
amount of time and at the same time provide a higher degree
of policy concealment. We are also considering other opti-
mizations, such as varying prefix length based on the height
of an operand in the expression tree to provide high con-
cealment at lower levels while reducing ambiguity at higher
levels sufficiently to prevent the total number of shares from
exploding. It would also be desirable to provide ambiguity
in OR expressions. We are considering other secret splitting
schemes that support n-ary expressions and may provide full
policy indistinguishability.

In relation to this, we plan to more rigorously define and
investigate different levels of policy indistinguishability. The
makeup and structure of the policy can be seen as plaintext
content, suggesting parallels between policy indistinguisha-
bility and the several kinds of ciphertext security. There
may also be applicable parallels from the domain of anony-
mous secret splitting.

There are some scenarios where Alice and Bob need multi-
ple rounds of messages to complete their transaction. Each
exchange guarantees that all relevant policies are satisfied
before any information is revealed, but continuing a trans-
action may reveal whether or not one was able to understand
the preceding message. The ability to bluff when one does
not understand a message is available, but the question of
when to stop bluffing is an interesting one that was investi-
gated in [8] but needs to be developed further.

We would also like to enable hidden credentials to use
more exotic operations on attribute values, such as greater
than and less than, without falling back to disclosure of
policy and credential content as other systems require.

8. ACKNOWLEDGEMENTS
Thanks to Hilarie Orman, Rich Schroeppel, Roger Din-

gledine and the anonymous reviewers for their invaluable
contributions.

9. REFERENCES
[1] D. Balfanz, G. Durfee, N. Shankar, D. Smetters,

J. Staddon, and H. Wong. Secret handshakes from
pairing-based key agreements. In Proceedings of the
2003 IEEE Symposium on Security and Privacy, pages
180–196, Oakland, CA, May 2003.

[2] M. Bellare and C. Namprempre. Authenticated
Encryption: Relations among Notions and Analysis of
the Generic Composition Paradigm. In Asiacrypt,
volume 1976 of Lecture Notes in Computer Science.
Springer-Verlag, 2000. Extended abstract.

[3] J. C. Benaloh and J. Leichter. Generalized secret
sharing and monotone functions. In S. Goldwasser,
editor, Advances in Cryptology - CRYPTO ’88,
volume 403 of Lecture Notes in Computer Science,
pages 27–35. Springer, 1990.

[4] E. Bertino, E. Ferrari, and A. Squicciarini. χ-TNL: An
XML-based language for trust negotiation. In Fourth
IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 81–84,
Como, Italy, June 2003. IEEE Computer Society
Press.

[5] P. Bonatti and P. Samarati. Regulating service access
and information release on the web. In Proceedings of
the 7th ACM Conference on Computer and
Communications Security (CCS-7), pages 134–143.
ACM Press, Nov. 2000.

[6] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. In Proceedings of Crypto 2001,
volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[7] E. Fujisaki and T. Okamoto. Secure integration of
asymmetric and symmetric encryption schemes.
Lecture Notes in Computer Science, 1666:537–554,
1999.

[8] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman.
Hidden credentials. In 2nd ACM Workshop on
Privacy in the Electronic Society, pages 1–8,
Washington, DC, Oct. 2003. ACM Press.

[9] N. Li, W. Du, and D. Boneh. Oblivious
signature-based envelope. In Proceedings of the 22nd
ACM Symposium on Principles of Distributed
Computing (PODC 2003), pages 182–189, Boston,
Massachusette, July 2003. ACM Press.

[10] K. E. Seamons, M. Winslett, and T. Yu. Limiting the
disclosure of access control policies during automated
trust negotiation. In Network and Distributed System
Security Symposium, pages 109–124, San Diego, CA,
Feb. 2001.

[11] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, volume I,
pages 88–102, Hilton Head, SC, Jan. 2000. IEEE
Press.

[12] M. Winslett, T. Yu, K. E. Seamons, A. Hess,
J. Jacobson, R. Jarvis, B. Smith, and L. Yu.
Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, November/December 2002.

[13] T. Yu and M. Winslett. A Unified Scheme for
Resource Protection in Automated Trust Negotiation.
In IEEE Symposium on Security and Privacy,
Oakland, CA, May 2003.

