
Or Best Offer: A Privacy Policy Negotiation Protocol∗

Dan D. Walker, Eric G. Mercer, and Kent E. Seamons
Brigham Young University, Provo, UT
{ danl4, egm, seamons }@cs.byu.edu

Abstract

Privacy policy languages, such as P3P, allow websites
to publish their privacy practices and policies in machine
readable form. Currently, software agents designed to pro-
tect users’ privacy follow a “take it or leave it” approach
that is inflexible and gives the server ultimate control. Pri-
vacy policy negotiation is one approach to leveling the play-
ing field by allowing a client to negotiate with a server to de-
termine how that server collects and uses the client’s data.
We present a privacy policy negotiation protocol, “Or Best
Offer”, that includes a formal model for specifying privacy
preferences and reasoning about privacy policies. The pro-
tocol is guaranteed to terminate within three rounds of ne-
gotiation while producing policies that are Pareto-optimal,
and thus fair to both the client and the server.

1 Introduction

Reports of identity theft and the loss and misuse of per-
sonal information fuel increased privacy concerns for users.
To help alleviate these concerns, many websites publicize
their privacy practices. Some use the Platform for Privacy
Preferences (P3P) [7], an XML language designed to spec-
ify how sites intend to handle information they collect about
their visitors. Usually, a site publishes its P3P policy in a
well-known location so that client software acting on the
user’s behalf examines the policy and compares it to the
preferences the user has configured to express how her data
is to be used. If the policy meets the client’s preferences,
the software agent approves the transaction, and the user
continues browsing without any noticeable interruption.

This “take it or leave it” approach is too limited. Spieker-
mann et al. [5] have shown that users have a variety of goals
in mind when formulating privacy preferences and that al-
most all are willing to make concessions. Users seem to
have an ideal set of preferences that they adhere to when

∗This research was supported by funding from the National Science
Foundation under grant no. CCR-0325951, prime cooperative agreement
no. IIS-0331707, and The Regents of the University of California.

possible, and another set of “good enough” preferences that
they are willing to accept for minimal privacy protection.
From the server’s perspective, although a site may prefer
to collect certain types of information and use it in rather
promiscuous ways, it may be willing to collect less infor-
mation, and use it in more protected ways, but only if a user
specifically requests such protections.

One way to increase the flexibility of P3P is per-session
privacy negotiations [1, 3, 6] that generate fine-grained pri-
vacy contracts to govern the use of data collected during a
transaction.

Our contributions include the following: a privacy policy
negotiation protocol that terminates within a finite number
of rounds, a set of preference models that allow for the spec-
ification of privacy preferences in a graphical and fairly in-
tuitive fashion, and the application of game theory to spec-
ify reasonable utility functions that allow us to show that
the protocol is Pareto-optimal, and thus fair to both parties.

The protocol is based on an “Or Best Offer” (OBO) ne-
gotiation style, similar to sellers who advertise an item for
a fixed price and then express a willingness to entertain a
“best offer”. The protocol enables per-session privacy con-
tract negotiations that are guaranteed to terminate within a
maximum of three negotiation rounds. The server makes a
proposal, the client makes a counter-proposal and also gives
hints about how the server can best satisfy her needs. Fi-
nally, the server does its best to conform to the clients pref-
erences, while at the same time meeting its own needs.

2 Related Work

The idea of negotiating per-session privacy policies was
rejected in P3P when the designers were unable to envision
scenarios in which this capability would be useful. Since
then, there have been two proposals.

First, Bennicke, Maaser, and Langendorfer introduced a
process by which a privacy contract is proposed and then
incrementally modified to meet the demands of both par-
ties. Negotiators make mandatory or optional demands,
and the goal is to have all mandatory demands met and
as many optional demands as possible. Each party alter-

natively assumes the roles, proposal maker and acceptor
[1, 3]. Second, the Privacy Server Protocol Project (PSP)
[6] is designed to allow clients and servers to produce “mu-
tual” privacy contracts. These contracts are mutual in the
sense that they are considered binding on both the server
and the client, instead of applying just to the server, as is
usually the case.

There are two limitations present in this earlier work that
our research seeks to address. First, earlier specifications
allow negotiating parties to engage in potentially endless
exchanges of proposals and counter-proposals. Second, ne-
gotiating agents in these systems cannot determine whether
the concessions they make increase or decrease the chances
of a successful negotiation. The goal of this research is a
protocol design specification that overcomes these limita-
tions while remaining secure and fair to both parties.

3 OBO Protocol Specification

The goals of OBO are to be complete, fair, and secure. A
protocol is complete if it always terminates. OBO is com-
plete by definition and only admits three rounds of negoti-
ation. A protocol is fair if it does not favor one party over
the other. OBO is fair, and we have proven its fairness using
Pareto-optimality from game theory [8]. Pareto-optimality
is the notion that in a successful negotiation, neither the
client nor the server can better meet their own needs with-
out causing the policy to be worse for the other. A protocol
is secure when it protects the negotiating parties or a third
party from manipulating the negotiation process. An analy-
sis of OBO security is contained in Section 7.2.

An OBO negotiation consists of three rounds. During
each round, one party in the negotiation makes a proposal
and the other makes a decision to accept or reject that pro-
posal. The first proposal is issued by the server, in the
form of its default privacy policy. This policy details all
of the ways in which the server needs to use the client’s
data to fulfill its purpose, along with other uses that the
server might put the data to in order to potentially increase
revenue or provide a more customized experience to the
user. The client may accept this policy, or issue a counter-
proposal. This counter-proposal will remove portions of the
policy that the client finds unacceptable. With the counter-
proposal, the client is effectively telling the server: “Give
me this much privacy, or make me your best offer.” Because
privacy means different things to different individuals, the
client must help the server understand which offers it might
formulate are “better” for this particular client. To accom-
plish this, the client sends information about its preferences
to the server, along with its counter-proposal. The server
can either accept the client’s counter-offer, or it may use the
information about the client’s preferences to formulate the
final “best offer” proposal. If the client rejects the final pro-

Proposalj = Proposal{Polj , t stamp, IDc, IDs

[,Preferences],
sign(Polj , t stamp, IDc, IDs[,Preferences])}

Acceptj = Accept{t stamp, sign(Proposalj , t stamp)}
Reject = Reject{}

Figure 1. OBO negotiation messages.

posal, then the negotiation fails. If at any point during the
negotiation one of the parties accepts a proposal, then the
negotiation succeeds and terminates.

Negotiations are carried out piecewise over portions of
the policy referred to as terms. An OBO negotiation is a
set of simultaneous term-level negotiations carried out in
parallel. If all term-level negotiations succeed, the results
are combined to produce a complete privacy policy contract.
If any of the negotiations fail, the overall negotiation fails.

There are three types of messages in the OBO protocol
(see Figure 1).

Proposal The proposal message for round j (Proposalj)
contains a proposal policy (Polj), which consists of all of
the terms still under negotiation, as well as any that have
been accepted. The message also contains a timestamp rep-
resenting the date and time the message was created, and
tokens that uniquely identify the client and server (IDc and
IDs, respectively). This message can optionally contain a
set of preferences (Preferences). A preference set consists
of graphs specified by the client that provide the server with
an indication of what types of terms the user considers to
be less desirable. These preferences are only present in the
second round proposal, Proposal2.

Accept An accept message for round j indicates that all
of the terms of Proposalj have been accepted and the ne-
gotiation should terminate. The contents of this message
constitute a privacy contract between the client and server.
Accept messages are approval tokens that indicate in an au-
thentic and non-repudiable way the acceptance of the last
proposal policy. This token consists of a digital signature
over the contents of Proposalj along with a time stamp.

Reject The reject message indicates that the current ne-
gotiation has failed. This message is only sent by the client,
and only at the end of the third round if the client does not
accept any of the terms in the server’s final proposal.

The rounds of an OBO negotiation proceed as follows.

Round 1 The client initiates the first round by connecting
to the server and requesting the server’s privacy policy. The

server replies by sending the default policy, P1, in the mes-
sage Proposal1. If the client accepts the default policy, it
sends Accept1, otherwise, Round 2 begins.

Round 2 If the client rejects any term in the server’s de-
fault policy from Round 1, then the client sends the mes-
sage Proposal2, including the client’s preference set. If the
server accepts the proposal, then it sends Accept2, other-
wise, Round 3 begins.

Round 3 If the server rejects the client’s counter-offer, it
has one more chance for the negotiation to succeed. The
server uses the client’s preference set, and its own prefer-
ences, to create a best-offer policy, P3, which is sent in the
message Proposal3. If the policy is acceptable, the client
sends Accept3, otherwise, the client sends Reject.

Throughout the remainder of this paper, we present a
running example of an OBO negotiation between a client
(Alice) and an online merchant (Bob). The negotiation rec-
onciles Alice’s privacy preferences with Bob’s data collec-
tion. Bob obtains revenue through selling goods, as well
as occasionally offering information about his customers to
“partners”. In addition, if Alice consents, Bob can use in-
formation about Alice to customize her experience at the
site, and occasionally makes parts of her profile available
for others to view. Once the preference model is formally
specified, the running example shows how Alice and Bob
specify their privacy preferences. Then, a three round nego-
tiation example is given where Alice negotiates a contract
with Bob for how he will handle her information such as her
physical address, purchase information, and financial data.

4 Policies

Privacy policies are composed of data elements and
practice tags. A data element is a reference to a single spe-
cific piece of information about an individual (e.g., a tele-
phone number). Data elements are organized hierarchically
into data categories and data sets, which can be used to
refer to groups of data elements. We use the industry stan-
dard elements and categories defined by the W3C. For ex-
ample, the data category “physical” contains all of the data
elements that would allow someone to contact or locate an
individual in the physical world. Here, we also define a
set AllData, which contains every data element that ap-
plies to an individual. It is important to note that actual data
about individuals does not occur inside of privacy policies,
only labels that refer to pieces of information that the site
may collect. For example, the policy may contain the token
“telephone”, but never an actual client telephone number.

In addition to declaring the types of data that they col-
lect, entities must also be able to specify how they will treat
that data. To do this, privacy policies associate practice
tags with data elements. There are three types of practice

tags: recipients, retention, and purpose. Recipients tags
specify the parties that will have access to the data, reten-
tion tags specify how long the data will be stored, and pur-
pose tags specify the ways in which the data will be used.
Three disjoint sets, RecipientTags, RetentionTags, and
PurposeTags are defined that contain all supported recip-
ients, retention and purpose tags, respectively. In this work
we populate these sets with the tags based on those found in
the P3P specification [7].

A privacy policy combines these atomic constituents as
a collection of terms, organized into statements. In order to
formulate privacy policies and preferences, it is often nec-
essary to refer to the individual terms of a policy. These
terms can be expressed in different ways. Using natural
language, for example, one might formulate the following
term: “we share your address with our shipping partners.”
Terms can also be expressed as formalized constructs in a
machine readable format using P3P. Formally, a policy is
a set of statements, that is P = {S1, ..., Sn}, where each
Si is a tuple of the form Si = (Di, Reci, Reti, Puri),
where Di ⊆ AllData, Reci ⊆ RecipientTags, Reti ⊆
RetentionTags, and Puri ⊆ PurposeTags.

The statements of a policy can further be decomposed
into terms, each of which is a tuple TX

i = (Di, Xi), where
Di is the set of data items specified in Si and X indicates the
term type and is one of: Rec, Ret, or Pur, with Xi being
the set of the appropriate type, also from Si. This means
that each statement consists of three terms, one for each
type. Figure 2 shows how an example policy term might be
represented formally. In this example, the P3P practice tags
“ours”, “delivery”, “same”, “others”, and “public” are ap-
plied to the named set of data elements “physical”, in order
to provide the same semantics as the natural language state-
ment. The P3P specification details the meaning of each tag
[7].

Each OBO policy negotiation can be thought of as a set
of synchronized concurrent negotiations, one for every term
in the policy. This is because different sets of data elements
have distinct preferences applied to them, and because it is
impractical to directly compare the utility of practice tags of
different types. The decisions and proposals made during
the negotiation of one term in the policy do not affect the
others. Therefore, the remaining discussion on policies will
focus on how to analyze and interpret individual terms. In
order to simplify the presentation here and without loss of
generality, we will assume that all the terms given in the
remainder of this paper refer to the same data set and are
of the same data type. Using this assumption, we will treat
references to T = TX

i = (Di, Xi) as references to Xi.

English: “We share your address with partners who will
use it to carry out delivery and perhaps in other ways
as well. Your address may also be shared with other
organizations, who’s privacy policies are known to us,
though they may differ from ours. It may also be
shared with other site visitors, when appropriate.”

Formal Term: TRec = (physical, { ours, delivery,
same, others, public})

Figure 2. A term from Bob’s default policy.

5 Preferences

Agents must be able to reason about the relative qual-
ity of the terms that will be evaluated during a negotiation.
A preference model defines the preferences of clients and
servers. From these models, utility functions are derived
that allow for the comparison and ranking of privacy pol-
icy terms. The models and utility functions must be defined
explicitly and unambiguously as they are central to the func-
tioning of the protocol and necessary in order to prove that
a solution is Pareto-optimal.

5.1 Utility Functions

A cardinal utility function is a function of the form
UC(T) → < which maps a term to a real value, called the
utility of T . In practice, it is unnecessary to completely
specify such a utility function. The actual real-valued utili-
ties are inconsequential, as long as policies can be sorted.
To accomplish this, ordinal utility functions, UO(Ti, Tj),
are defined for use by the software agents. These functions
act as comparators that can be used to sort terms in non-
descending utility order, without requiring the cardinal util-
ity values. Ordinal utility functions can be easier to define,
as only proportionality, and not magnitude is required.

Definition 1. UO is an ordinal utility function if ∀Ti, Tj:

UO(Ti, Tj) =

0 if UC(Ti) = UC(Tj)
1 if UC(Ti) > UC(Tj)
−1 if UC(Ti) < UC(Tj)

Because the number of terms that can be created with
a finite set of tags is also finite, there must be at least one
term that has utility greater than or equal to all other terms.
The value of UC for this term is the upper bound on the
range for that function and is called MAX U . The exact
value of MAX U is unimportant, as the term T for which
UC(T) = MAX U can be found using UO.

Finally, each party specifies a threshold utility value
FAILURE U that determines the minimal threshold for
terms it will accept.

5.2 Client Preference Model

The formulation of client privacy preferences follows a
data-centric model [10]. All data categories and (as re-
quired) data elements are assigned three separate DAGs (di-
rected acyclic graphs), one each for the retention, recipients
and purpose tag types. These DAGs define partial order-
ings over tags that can be found in policy terms, with each
tag occupying a node in the graph. For example, the recip-
ients graph, GRec, gives a partial ordering over all tags in
RecipientTags.

In this ordering, for tags X and Y , X ≺G Y if there is a
non-empty path in the graph from X to Y . Also, X �G Y
indicates that either X = Y (they are the same tag) or
X ≺G Y . We say that, X and Y are independent if nei-
ther X �G Y nor Y �G X . In general we say that the
preferability of a node is inversely related to this ordering,
so that if X ≺G Y , then the client prefers tag X to tag Y .

Once graphs have been assigned to data elements, two
sets of nodes, A and C, in each graph are selected as accept-
able and unacceptable cutoff frontiers, respectively. These
frontiers must partition the graph’s set of nodes, N , into
three disjoint sub-sets: Ideal , Acc, and Unacc, which are
defined as shown here:

Ideal = {n ∈ N | ∃a ∈ A : n ≺G a}
Acc = {n ∈ N | ∃a ∈ A, c ∈ C : a �G n �G c}

Unacc = {n ∈ N | ∃c ∈ C : c ≺G n}

These sets contain tags that the client considers to be ideal,
acceptable and unacceptable, respectively. Ideal tags are
those that the user “doesn’t mind,” that is, they have no neg-
ative impact on the utility of the policy as far as the client is
concerned. Acceptable tags are those which the user would
prefer not be included in the policy, but that are tolerable if
unavoidable. Unacceptable tags are deal breakers. By plac-
ing a tag in this set, the client conveys that a negotiation
should fail before the agent accepts a policy containing that
tag. Users must be solicited for information about their tol-
erances in order to determine which of these sets each tag
should belong to. This could be done in a guided fashion,
with the system using the preference DAGs to selectively
query the user about individual tag memberships until the
borders are determined. Another approach would be to pro-
vide the user with some way to group or label the nodes free
form, after appropriate instruction.

Once the graphs and cutoff frontiers are defined, the pref-
erences for each data element Di are expressed by the tuple:
(Di, G

Ret
i , GRec

i , GPur
i , ARet

i , CRet
i , ARec

i , CRec
i , APur

i ,
CPur

i), where the GX ’s are the preference DAGs, and the
AX ’s and CX ’s are the acceptable and unacceptable cut-
off frontiers for each graph. Data elements can be grouped
together under the same set of preferences as desired.

From the specification of the client’s preference model,
it is possible to derive a utility function over terms for the
client. Again, we assume that all terms and graphs refer to
the same data sets and are of the same type. First, we define
the concept of the least-preferred nodes in a set of tags.

Definition 2. Given a preference graph G and a term, T ,
the least-preferred nodes in T are those in the set

L(T, G) = {x | x ∈ T ∧ ∀y ∈ T, x ⊀G y}

In general, we say that the utility of the term as a whole
is determined by the least preferable tags contained in that
term, and is inversely proportional to the ordering over tags
defined in the client’s preference graph, G. This means
that for tags M and N , if M ≺G N , and term TM con-
tains tag M but not tag N and L(TM , G) = {M}, TN

contains tag N but not tag M and L(TN , G) = {N} and
TMN contains both M and N and L(TMN , G) = {N},
then UC(TN) ≤ UC(TM) and UC(TN) = UC(TMN). In
addition, the following constraints apply:

1. M ∈ Ideal =⇒ UC(TM) = MAX U

2. M ∈ Unacc =⇒ UC(TM) < FAILURE U

3. M,N ∈ Acc ∧M ≺G N =⇒ UC(TM) > UC(TN)

4. M,N ∈ Acc ∧M = N =⇒ UC(TM) = UC(TN)

5. M,N ∈ Acc ∧ (M �G N ∧N �G M) =⇒
UC(TM) = UC(TN)

Given these constraints on UC , we may now define the
client’s ordinal utility function over terms. This function
formalizes the constraints listed above, generalizing them to
apply to the case where nodes M and N are replaced with
arbitrary sets of least-preferred nodes. Recall that Ideal ,
Acc, and Unacc form a mutually exclusive partition.

Definition 3. The client’s ordinal utility function over terms
with respect to graph G is:

UO(Ti, Tj) =

0 if (Li ⊆ Ideal ∧ Lj ⊆ Ideal)∨
(| Fj |=| Fi | ∧ | Lj |=| Li |)∨
(Li ∩Unacc 6= ∅∧
Lj ∩Unacc 6= ∅)

1 if (Li ∩Unacc = ∅∧
Lj ∩Unacc 6= ∅)∨
(Li ∩Acc 6= ∅ ∧ Lj ∩Acc 6= ∅∧
(| Fj |>| Fi | ∨ | Lj |>| Li |))

−1 if UO(Tj , Ti) = 1

where Ti and Tj are the terms to be compared and Li = {t |
t ∈ L(Ti, G)}, Fi = {t | t ∈ Li ∧ ∃u ∈ Lj s.t. u ≺G t},
and Lj and Fj are defined similarly for Tj .

Figure 3. Alice’s recipients preference graph,
with A and C cutoff frontiers.

In other words, two terms have equivalent utility if all of
their least-preferred nodes are in Ideal . If both terms have
a least-preferred node in Unacc, or if both least-preferred
tag sets contain the same number of tags that are less pre-
ferred than least-preferred tags in the other, and both least-
preferred sets are the same size. A term that does not have
any of its least-preferred nodes in Unacc has greater util-
ity than one that does. A term that has all of its least pre-
ferred nodes in Ideal has greater utility than one that does
not. Also, if both sets have least-preferred tags in Acc, then
the one that has the most least-preferred tags that are less
preferred than the other term’s, or has fewer least-preferred
tags in general, has less utility than the other.

With this function, we may identify terms with maximal
utility, and those that have utility less than FAILURE U .

Definition 4. The maximal utility term for the client is any
term, T , that contains only ideal tags:

UC(T) = MAX U ⇐⇒ T ⊆ Ideal .

Definition 5. A client would rather a negotiation fail than
accept any term T that contains an unacceptable tag:

UC(T) < FAILURE U ⇐⇒ T ∩Unacc 6= ∅.

Running Example 1 (Alice’s Preferences). Alice defines
preference graphs to safeguard her personal data. She
might compose these graphs herself using a software tool,
select them from a pre-packaged source, or provide them as
part of a security suite. Figure 3 shows one of these graphs
that gives an ordering over recipient tags. Many possible
configurations exist for each graph type. Alice might choose
only one graph of each type for all her data, or apply differ-
ent graphs to different data groups.

Alice groups her data as follows:

D1(sensitive data) = {physical, purchase, financial}

D2 (less sensitive data) = {e | e ∈ AllData ∧ e /∈ D1}

These sets contain labels of data elements, or categories of
elements. Each group is assigned a set of preferences. This

means, for example, that if a privacy policy statement men-
tions any of the categories (e.g. physical), or members of
the categories (e.g., address) in D1, a certain set of pref-
erences needs to be applied to that statement. In an actual
configuration, each group is assigned a retention, recipi-
ents and purpose graph. For simplicity, in this example
we only specify that Group D1 is assigned the recipients
graph shown in Figure 3. The cutoff nodes for this graph
are A = {same, delivery} and C = {others}. These cut-
off nodes indicate that Alice has no problem with the server
sharing her sensitive data with organizations that only use
it for fulfilling her requests (ours), but is hesitant about the
server sharing it with other organizations that might use
it in other ways (same, delivery, others). Alice also does
not want her sensitive information shared with the public or
with organizations that have unknown policies (unrelated).

5.3 Server Preference Model

The server side preference model is much simpler, this
is the result of several factors. First, clients use the web
for many distinct purposes, from shopping to web-mail to
research. In contrast to clients, servers execute a relatively
limited set of functions, all of which are governed by a given
purpose or business model. The server preferences, there-
fore, are much more static then client preferences and are
determined by the function of the server and the business re-
quirements for the site collecting data from visitors. Also,
since the object of the negotiation is the personal data of
the clients, of which there are many, the client’s preference
model naturally needs more granularity and flexibility than
the servers. This being the case, the server model groups
preferences into just 2 categories:

1. Req - Because of technical or business model con-
straints, these terms must be in the final policy or the
negotiation will fail.

2. Pref - These terms should be included in the final pol-
icy if possible, but if they cannot be, negotiation can
still succeed.

We call members of Req required and members of Pref pre-
ferred.

Each of these categories is a set of pairs of the form
Category = {K1, ...Km} where each Ki is a pair of the
form (Di, ti) where Di is a set of data elements and ti is a
preference tag. Again, to simplify notation, we assume in
what follows that all references to these categories refer to
a single term and the data set D and are all of the same type
X . Therefore, we treat references to Category as though it
where the set of tags: {t | ∃K = (D, t)∧K ∈ Category}.

The server’s utility function is much simpler than the
client’s. First, the server may not accept any term which

does not contain all of its required tags. Also, for any term
T which contains all of the server’s required tags, UC(T)
is proportional to the number of preferred tags contained in
the term. These constraints make it possible to fully specify
the server’s ordinal utility function over terms.

Definition 6. The ordinal utility function over server terms:

UO(Ti, Tj) =

0 if (| Ri |=| Rj |) ∧ (| Pi |=| Pj |)

1 if (| Ri |>| Rj |)∨
((| Ri |=| Rj |) ∧ (| Pi |>| Pj |))

−1 if UO(Tj , Ti) = 1

where Ti and Tj are the terms to be compared, Req and
Pref are the server’s preference sets, Ri = {x | x ∈ Ti ∧
x ∈ Req}, Pi = {x | x ∈ Ti ∧ x ∈ Pref }, and Rj and Pj

are defined similarly for Tj .

That is, two terms have equivalent utility if they contain
the same number of required tags and the same number of
preferred tags. If two terms have different numbers of re-
quired tags, the term with more required tags has higher
utility. Also, if two terms contain the same number of re-
quired tags, the one with the highest number of preferred
tags has the greatest utility.

With the server utility function, the terms with maximal
utility, and those that have utility less than FAILURE U
for the server can be identified.

Definition 7. The maximal utility term for the server is any
term, T , that contains all required and all preferred tags:

UC(T) = MAX U ⇐⇒ Req ⊆ T ∧ Pref ⊆ T.

Definition 8. A server would rather a negotiation fail than
accept any term T that does not contain all required tags:

UC(T) < FAILURE U ⇐⇒ Req * T.

Running Example 2 (Bob’s Preferences). This is the por-
tion of Bob’s preferences that relates to recipients tags as
applied to his customer’s sensitive data:

physical, purchase and financial:
Required: delivery, others
Preferred: ours, same, public

These preferences mean that Bob must be able to give Al-
ice’s physical, purchase and financial information, if col-
lected, to entities that will use it for delivery and, poten-
tially, other purposes (delivery). He also must be allowed
to share it with companies accountable to him, but who may
have privacy policies that he is not familiar with (others).
Bob would also like the option of sharing that data with or-
ganizations that only use it to help fulfill any orders placed
by the user (ours), and partners having similar privacy poli-
cies (same). Finally, he would prefer having the option to
share it with other visitors, when appropriate (public).

Agent Agent task Preference constraints Protocol constraints
Client Accept proposal Reject policies containing unaccept-

able tags
None

Client Counter-proposal Remove all unacceptable nodes Term should have highest possible
utility and only contain Ideal tags

Server Accept proposal Only accept policies containing all
the server’s required tags

None

Server “Best offer” Ensure that the policies contains all
required tags and as many preferred
tags as possible

Server not decrease client utility any
more than necessary for the negotia-
tion to succeed

Table 1. Constraints on agent behavior during OBO negotiations.

6 Negotiation Strategy

Agents are constrained in the formulation of proposal
policies in that they must follow strategies that are consis-
tent with the preferences of the party they represent, while
at the same time fulfilling the guidelines specified by the
protocol. Table 1 outlines these constraints. Any agent that
acts within these constraints can engage in OBO negotia-
tions. However, not all strategies that are consistent with
these constraints are guaranteed to be fair (produce Pareto-
optimal policies). Here we describe a set of rules that meet
these constraints and that, when followed by both parties,
are sufficient to always produce Pareto-optimal results. This
set of rules is the “OBO Pareto-optimal strategy”.

Rule 1 (Initial Offer Rule). The server’s initial offer term
is T = Req ∪ Pref .

Rule 2 (Early Acceptance Rule). In rounds 1 and 2, a party,
A, may only accept a proposal term T from party B if
UA

C (T) ≥ UA
C (T ′), where T ′ is the counter-proposal term

that A would send to B upon rejection of T .

Rule 3 (Client Counter-proposal Rule). Given an initial
proposal term T from the server and client preference graph
G, the client formulates a new term T ′ = {t | t ∈ T ∧ t ∈
Ideal according to the A cutoff frontier for G}.

Rule 4 (Server Best-offer Rule). Given a proposal term T
from the client, the server formulates its best-offer term T ′′

in two stages. First, the server inserts all of its Req tags
into the term, creating a new set T ′ = Ti ∪ Req . Next, it
adds all of its preferred tags into the set that it can, without
decreasing the utility of the term for the client by creating a
new set T ′′ = T ′ ∪ {t | t ∈ Pref ∧ ∃s ∈ T ′ s.t. t ≺ s}.

Rule 5 (Client Final Acceptance Rule). Given a best-
offer proposal term T and client preference graph G,
the client accepts the term only if T ∩ Unacc =
∅ according to the C cutoff frontier of G and rejects other-
wise.

Running Example 3 (Alice and Bob Negotiate). Based
on their preferences, Alice and Bob apply the rules of the
Pareto-optimal strategy in the negotiation over the recipi-
ents of Alice’s address information as follows. In Round 1,
Bob sends this term (Rule 1):

TRec
1 = (D1, { ours, delivery, same, others, public})

Alice rejects Bob’s offer (Rules 2 and 3), sends her prefer-
ence graphs, data groupings, and the following policy (Rule
3):

TRec
1 = (D1, { ours})

This counter-proposal decreases the number of recipients
with which Alice’s sensitive information can be shared. In
the final round Bob rejects Alice’s proposal (Rules 2 and 4)
and formulates a “best offer” policy (Rule 4):

TRec
1 = (D1, { ours, delivery, same, others})

This term re-introduces Bob’s required tags delivery and
others that were removed by Alice. Also, the preferred term
same was re-introduced because same ≺G others. Fi-
nally, Alice accepts the policy (Rule 5).

7 Protocol Evaluation

The OBO protocol is complete by definition; all negoti-
ations are guaranteed to terminate within three rounds. The
protocol is also fair and secure. Fairness is evaluated by
proving that terms resulting from a successful OBO nego-
tiation are Pareto-optimal. The security of the protocol is
analyzed as well, using a threat model to identify potential
problems in the security of the protocol, and then present-
ing implementation design considerations that could miti-
gate these problems.

7.1 Fairness Analysis

Pareto-optimality, or Pareto-efficiency is a property of
some game and negotiation end-states. It is often used as

an indication that the benefits of successful negotiations are
balanced for both parties [2, 9, 4]. For a state to be Pareto-
optimal, it must be the case that there is no other state that is
better for all parties in the negotiation, or better for at least
one party and not worse for all the others.

Definition 9. Given two negotiating parties P1 and P2, a
policy term T is Pareto-optimal if for all other T ′ the fol-
lowing holds:

((UP1
C (T ′) = UP1

C (T)) ∧ (UP2
C (T ′) = UP2

C (T)))∨

((UP1
C (T ′) < UP1

C (T)) ∨ (UP2
C (T ′) < UP2

C (T))).

Recall that the cardinal utility function, UC , for a negoti-
ating party is implicitly defined by a corresponding ordinal
utility function, UO, that effectively orders any two related
terms in a negotiation (see Definition 1). A Pareto-optimal
term is thus a term for which all other related terms are less
desirable for one negotiating party or have the same utility
for both negotiating parties according to their respectively
defined ordinal utility functions.

Theorem 1. If the parties in an OBO negotiation both fol-
low the OBO Pareto-optimal strategy in Section 6, then a
successful negotiation always produces a Pareto-optimal
term. The proof of Pareto optimality is given in [8].

7.2 Security Analysis

Negotiators must keep certain information secret in or-
der to maintain fairness. Client’s must hide the A and C
node sets for each graph from the server. Server’s must
hide whether a tag is required or preferred. If the server
knows the set C for a given graph, it can add as many of
its preferred tags as it would like, up to and including the
members of C, meaning that it has no reason to make an
effort to meet the client’s preferences as closely as possible.

Clients and servers are both vulnerable to probing attacks
if two parties engage in mulitple OBO negotiations with
each other. If one party is stingy and gradually reveals more
information across failed negotiations, the point at which a
negotiation finally succeeds can leak information about the
other parties’ preferences. A client can avoid this by main-
taining a cache of negotiated policies to avoid unnecessary
renegotiations. Servers are less able to track negotiations
with a single client, but there is less risk to such attacks
since server preferences are usually publicized in a server’s
privacy policy.

8 Conclusions and Future Work

The Or Best Offer privacy policy negotiation protocol is
complete, fair and secure. Its formal underpinnings pro-
vide properties not found in prior negotiation protocols. It
is backwards-compatible with P3P.

A significant contribution of this work is the novel graph-
ical model for expressing client privacy preferences and
utility functions, derived from preference models, that al-
low for the comparison of policy terms. In addition, the
definition of utility functions allows for the application of
game theoretical concepts to analyze the properties of the
protocol. This formalism allows conjecture about alterna-
tive negotiation strategies and algorithms. As new strategies
are envisioned, fairly simple analysis using concepts such
as Pareto-optimality and Nash equilibrium would yield an
understanding of their potential performance.

The graphical model may be an improvement over rule-
based preference models in terms of usability. Other future
work includes increasing the expressiveness of the client
and server prefernce models.

References

[1] M. Bennicke and P. Langendorfer. Towards automatic ne-
gotiation of privacy contracts for internet services. In 11th
IEEE International Conference on Networks, Sydney, Aus-
tralia, October 2003.

[2] R. Lau. Adaptive negotiation agents for e-business. In Pro-
ceedings of the 7th international Conference on Electronic
Commerce, Xi’an, China, August 2005.

[3] M. Maaser and P. Langendoerfer. Automated negotia-
tion of privacy contracts. In 29th Annual International
Computer Software and Applications Conference (COMP-
SAC’05), July 2005.

[4] V. Robu, D. Somefun, and J. L. Poutré. Modeling complex
multi-issue negotiations using utility graphs. In Proceedings
of the 4th international joint Conference on Autonomous
Agents and Multiagent Systems, Utrecht, Netherlands, July
2005.

[5] S. Spiekermann, J. Grossklags, and B. Berendt. E-privacy
in 2nd generation e-commerce: privacy preferences versus
actual behavior. In 3rd ACM conference on Electronic Com-
merce, Tampa, Florida, October 2001.

[6] R. Thibadeau. Privacy server protocol: Short sum-
mary. http://yuan.ecom.cmu.edu/psp/SummaryInterop.pdf,
November 2000.

[7] W3C. The platform for privacy preferences 1.1 (P3P1.1)
specification. http://www.w3.org/TR/2005/WD-P3P11-
20050701/, 2005.

[8] D. Walker. Or best offer: A privacy policy negotiation proto-
col. Master’s thesis, Brigham Young University, June 2007.

[9] S.-H. Wu and V.-W. Soo. Game theoretic reasoning in multi-
agent coordination by negotiation with a trusted third party.
In Proceedings of the 3rd international Conference on Au-
tonomous Agents, Seattle, Washington, May 1999.

[10] T. Yu, N. Li, and A. I. Anton. A formal semantics for p3p.
In ACM Workshop on Secure Web Services, Fairfax, VA, Oc-
tober 2004. ACM Press.

	Introduction
	Related Work
	OBO Protocol Specification
	Policies
	Preferences
	Utility Functions
	Client Preference Model
	Server Preference Model

	Negotiation Strategy
	Protocol Evaluation
	Fairness Analysis
	Security Analysis

	Conclusions and Future Work

